skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stepanova, Anna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Arabidopsis thaliana is currently the most-studied plant species on earth, with an unprecedented number of genetic, genomic, and molecular resources having been generated in this plant model. In the era of translating foundational discoveries to crops and beyond, we aimed to highlight the utility and challenges of using Arabidopsis as a reference for applied plant biology research, agricultural innovation, biotechnology, and medicine. We hope that this review will inspire the next generation of plant biologists to continue leveraging Arabidopsis as a robust and convenient experimental system to address fundamental and applied questions in biology. We aim to encourage laboratory and field scientists alike to take advantage of the vast Arabidopsis datasets, annotations, germplasm, constructs, methods, and molecular and computational tools in our pursuit to advance understanding of plant biology and help feed the world's growing population. We envision that the power of Arabidopsis-inspired biotechnologies and foundational discoveries will continue to fuel the development of resilient, high-yielding, nutritious plants for the betterment of plant and animal health and greater environmental sustainability. 
    more » « less
    Free, publicly-accessible full text available May 9, 2026
  2. Contribution: In this work-in-progress paper we describe the process of creating and validating a conceptual assessment in the field of sedimentology for undergraduate geoscience courses. The mechanism can aid future geoscience educators and researchers in the process of academic assessment development aligned with learning objectives in these courses. Background: Prior literature review supports the benefits of using active learning tools in STEM (Science, Technology, Engineering, and Mathematics) courses. This paper is part of a larger project to develop and incorporate research-based active learning software in sedimentology and other geoscience courses to improve grade point average (GPA) and time to graduation for Hispanic students at Texas A&M University. To evaluate the novel tool, we designed and validated the conceptual assessment instrument presented in this work. Research Question: What is the process to develop and validate a conceptual assessment for sedimentology? Methodology: This paper follows quantitative analysis and the assessment triangle approach and focuses on cognition, observation, and interpretation to design and evaluate the conceptual assessment. In the cognition element of the triangle, we explain the mechanism for creating the assessment instrument using students' learning objectives. The observation element explains the mechanism of data collection and the instrument revision. The interpretation element explains the results of the validation process using item response theory and reliability measures. We collected the conceptual assessment data from 17 participants enrolled in two courses where sedimentology topics are taught. Participants were geology majors in one of the courses and engineering majors in the other. Findings: The team developed a conceptual assessment that included eight multiple-choice (MCQ) and four open-ended response questions. The results of the design process described the conceptualization of questions and their validation. Also, the validity of created rubrics was established using inter-rater reliability measures, which showed good agreement between raters. Additionally, the results of the validation process indicated that the conceptual assessment was designed for students with average abilities. 
    more » « less
  3. Hispanic student performance indicators are markedly different from students of other ethnicities, with Hispanic students consistently having lower GPAs at graduation. SedimentSketch application will be a visual, personalized, and dual language tool that will combine new curricular materials and sketch recognition algorithms to improve student learning through sketching exercises and automatic, instantaneous feedback. We are currently working on development of SedimentSketch software, and only control group data are being collected. We hypothesize that SedimentSketch can transform the higher-education geoscience curriculum for Hispanic Serving Institutions (HSI) by enabling geoscience students to interact with the material and receive helpful feedback outside of class and by cultivating a more inclusive learning environment. The goal of this project is to use SedimentSketch application to help close the gap between Hispanic and non-Hispanic students’ GPAs, situational interest in geoscience courses, and STEM career trajectories. 
    more » « less
  4. SUMMARY Plants are essential for human survival. Over the past three decades, work with the reference plantArabidopsis thalianahas significantly advanced plant biology research. One key event was the sequencing of its genome 25 years ago, which fostered many subsequent research technologies and datasets. Arabidopsis has been instrumental in elucidating plant‐specific aspects of biology, developing research tools, and translating findings to crop improvement. It not only serves as a model for understanding plant biology and but also biology in other fields, with discoveries in Arabidopsis also having led to applications in human health, including insights into immunity, protein degradation, and circadian rhythms. Arabidopsis research has also fostered the development of tools useful for the wider biological research community, such as optogenetic systems and auxin‐based degrons. This 4th Multinational Arabidopsis Steering Committee Roadmap outlines future directions, with emphasis on computational approaches, research support, translation to crops, conference accessibility, coordinated research efforts, climate change mitigation, sustainable production, and fundamental research. Arabidopsis will remain a nexus for discovery, innovation, and application, driving advances in both plant and human biology to the year 2030, and beyond. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  5. Summary Advancement of DNA‐synthesis technologies has greatly facilitated the development of synthetic biology tools. However, high‐complexity DNA sequences containing tandems of short repeats are still notoriously difficult to produce synthetically, with commercial DNA synthesis companies usually rejecting orders that exceed specific sequence complexity thresholds. To overcome this limitation, we developed a simple, single‐tube reaction method that enables the generation of DNA sequences containing multiple repetitive elements. Our strategy involves commercial synthesis and PCR amplification of padded sequences that contain the repeats of interest, along with random intervening sequence stuffers that include type IIS restriction enzyme sites. GoldenBraid molecular cloning technology is then employed to remove the stuffers, rejoin the repeats together in a predefined order, and subclone the tandem(s) in a vector using a single‐tube digestion–ligation reaction. In our hands, this new approach is much simpler, more versatile and efficient than previously developed solutions to this problem. As a proof of concept, two different phytohormone‐responsive, synthetic, repetitive proximal promoters were generated and testedin plantain the context of transcriptional reporters. Analysis of transgenic lines carrying the synthetic ethylene‐responsive promoter10x2EBS‐S10fused to theGUSreporter gene uncovered several developmentally regulated ethylene response maxima, indicating the utility of this reporter for monitoring the involvement of ethylene in a variety of physiologically relevant processes. These encouraging results suggest that this reporter system can be leveraged to investigate the ethylene response to biotic and abiotic factors with high spatial and temporal resolution. 
    more » « less